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Table 2.4  Range and order of masses

2.5   MEASUREMENT OF TIME
To measure any time interval we need a clock.
We now use an atomic standard of time, which
is based on the periodic vibrations produced in
a cesium atom. This is the basis of the caesium
clock, sometimes called atomic clock, used in
the national standards. Such standards are
available in many laboratories. In the caesium
atomic clock, the second is taken as the time
needed for 9,192,631,770 vibrations of the
radiation corresponding to the transition
between the two hyperfine levels of the ground
state of caesium-133 atom. The vibrations of the
caesium atom regulate the rate of this caesium
atomic clock just as the vibrations of a balance
wheel regulate an ordinary wristwatch or the
vibrations of a small quartz crystal regulate a
quartz wristwatch.

The caesium atomic clocks are very accurate.
In principle they provide portable standard.  The
national standard of time interval ‘second’ as
well as the frequency is maintained through four
cesium atomic clocks.  A caesium atomic clock
is used at the National Physical Laboratory
(NPL), New Delhi to  maintain the Indian
standard of time.

In our country, the NPL has the responsibility
of maintenance and improvement of physical
standards, including that of time, frequency, etc.
Note that the Indian Standard Time (IST) is
linked to this set of atomic clocks. The efficient
caesium atomic clocks are so accurate that they
impart the uncertainty in time realisation as

± 1 × 10–15, i.e. 1 part in 1015.  This implies that
the uncertainty gained over time by such a
device is less than 1 part in 1015; they lose or
gain no more than 32 µs in one year. In view of
the tremendous accuracy in time measurement,
the SI unit of length has been expressed in terms
the path length light travels in certain interval
of time (1/299, 792, 458 of a second) (Table 2.1).

The time interval of events that we come
across in the universe vary over a very wide
range. Table 2.5 gives the range and order of
some typical time intervals.

You may notice that there is an interesting
coincidence between the numbers appearing
in Tables 2.3 and 2.5. Note that the ratio of the
longest and shortest lengths of objects in our
universe is about 1041. Interestingly enough,
the ratio of the longest and shortest time
intervals associated with the events and objects
in our universe is also about 1041. This number,
1041 comes up again in Table 2.4, which lists
typical masses of objects. The ratio of the
largest and smallest masses of the objects in
our universe is about (1041)2. Is this a curious
coincidence between these large numbers
purely accidental ?

2.6 ACCURACY, PRECISION OF INSTRUMENTS
AND ERRORS IN MEASUREMENT

Measurement is the foundation of all
experimental science and technology. The result
of every measurement by any measuring
instrument contains some uncertainty. This
uncertainty is called error. Every calculated
quantity which is based on measured values,
also has an error. We shall distinguish between
two terms: accuracy and precision. The
accuracy of a measurement is a measure of how
close the measured value is to the true value of
the quantity. Precision tells us to what resolution
or limit the quantity is measured.

The accuracy in measurement may depend on
several factors, including the limit or the resolution
of the measuring instrument. For example, suppose
the true value of a certain length is near 3.678 cm.
In one experiment, using a measuring instrument
of resolution 0.1 cm, the measured value is found to
be 3.5 cm, while in another experiment using a
measuring device of greater resolution, say 0.01 cm,
the length is determined to be 3.38 cm. The first
measurement has more accuracy (because it is
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closer to the true value) but less precision (its
resolution is only 0.1 cm), while the
second measurement is less accurate but
more precise. Thus every measurement is
approximate due to errors in measurement. In
general, the errors in measurement can be
broadly classified as (a) systematic errors and
(b) random errors.

Systematic errors

The systematic errors are those errors that
tend to be in one direction, either positive or
negative. Some of the sources of systematic
errors are :

(a) Instrumental errors that arise from the
errors due to imperfect design or calibration
of the measuring instrument, zero error in
the instrument, etc. For example, the
temperature graduations of a thermometer
may be inadequately calibrated (it may read
104 °C at the boiling point of water at STP
whereas it should read 100 °C); in a vernier
callipers the zero mark of vernier scale may
not coincide with the zero mark of the main
scale, or simply an ordinary metre scale may
be worn off at one end.

(b) Imperfection in experimental technique
or procedure To determine the temperature

of a human body, a thermometer placed
under the armpit will always give a
temperature lower than the actual value of
the body temperature. Other external
conditions (such as changes in temperature,
humidity, wind velocity, etc.) during the
experiment may systematically affect the
measurement.

(c) Personal errors that arise due to an
individual’s bias, lack of proper setting of
the apparatus or individual’s carelessness
in taking observations without observing
proper precautions, etc. For example, if you,
by habit, always hold your head a bit too far
to the right while reading the position of a
needle on the scale, you will introduce an
error due to parallax.

Systematic errors can be minimised by
improving experimental techniques, selecting
better instruments and removing personal bias
as far as possible. For a given set-up, these
errors may be estimated to a certain extent and
the necessary corrections may be applied to the
readings.

Random errors

The random errors are those errors, which occur
irregularly and hence are random with respect

Table 2.5   Range and order of time intervals
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to sign and size. These can arise due to random
and unpredictable fluctuations in experimental
conditions (e.g. unpredictable fluctuations in
temperature, voltage supply, mechanical
vibrations of experimental set-ups, etc), personal
(unbiased) errors by the observer taking
readings, etc. For example, when the same
person repeats the same observation, it is very
likely that he may get different readings
everytime.

Least count error

The smallest value that can be measured by the
measuring instrument is called its least count.
All the readings or measured values are good only
up to this value.

The least count error is the error
associated with the resolution of the instrument.
For example, a vernier callipers has the least
count as 0.01cm; a spherometer may have a
least count of 0.001 cm. Least count error
belongs to the category of random errors but
within a limited size; it occurs with both
systematic and random errors. If we use a metre
scale for measurement of length, it may have
graduations at 1 mm division scale spacing or
interval.

Using instruments of higher precision,
improving experimental techniques, etc., we can
reduce the least count error. Repeating the
observations several times and taking the
arithmetic mean of all the observations, the
mean value would be very close to the true value
of the measured quantity.

2.6.1 Absolute Error, Relative Error and
Percentage Error

(a) Suppose the values obtained in several
measurements are a

1
, a

2
, a

3
...., a

n
.  The

arithmetic mean of these values is taken as
the best possible value of the quantity under
the given conditions of measurement as :

a
mean

 = (a
1
+a

2
+a

3
+...+a

n
 ) / n (2.4)

or,

a a / nmean i

i 1

n

=
=
 (2.5)

This is because, as explained earlier, it is
reasonable to suppose that individual
measurements are as likely to overestimate

as to underestimate the true value of the
quantity.

The magnitude of the difference

between the individual measurement and

the true value of the quantity is called the

absolute error of the measurement. This
is denoted by |∆a |. In absence of any other
method of knowing true value, we considered
arithmatic mean as the true value.  Then the
errors in the individual measurement values
from the true value, are
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The ∆a calculated above may be positive in
certain cases and negative in some other
cases. But absolute error |∆a| will always
be positive.

(b) The arithmetic mean of all the absolute errors

is taken as the final or mean absolute error

of the value of the physical quantity a. It is
represented by ∆a

mean
.

Thus,
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If we do a single measurement, the value we
get may be in the range a

mean
 ±  ∆a

mean

i.e.      a = a
mean

 ±  ∆a
mean

or,
     a

mean
 – ∆a

mean
 ≤ a  ≤ a

mean
 + ∆a

mean

(2.8)

This implies that any measurement of the
physical quantity a is likely to lie between

(a
mean

+ ∆a
mean

)  and  (a
mean

− ∆a
mean

).
(c) Instead of the absolute error, we often use

the relative error or the percentage error

(δa).  The relative error is the ratio of the

mean absolute error ∆∆∆∆∆a
mean

 to the mean

value a
mean 

of the quantity measured.

2022-23



UNITS AND MEASUREMENT 25





Relative error = ∆a
mean

/a
mean

(2.9)

When the relative error is expressed in per
cent, it is called the percentage error (δa).

Thus, Percentage error

δa = (∆a
mean

/a
mean

) × 100% (2.10)

Let us now consider an example.

Example 2.6  Two clocks are being tested
against a standard clock located in a
national laboratory.  At 12:00:00 noon by
the standard clock, the readings of the two
clocks are :

Clock 1 Clock 2

Monday 12:00:05 10:15:06
Tuesday 12:01:15 10:14:59
Wednesday 11:59:08 10:15:18
Thursday 12:01:50 10:15:07
Friday 11:59:15 10:14:53
Saturday 12:01:30 10:15:24
Sunday 12:01:19 10:15:11

If you are doing an experiment that requires
precision time interval measurements, which
of the two clocks will you prefer ?

Answer   The range of variation over the seven
days of observations is 162 s for clock 1, and
31 s for clock 2.  The average reading of clock 1
is much closer to the standard time than the
average reading of clock 2.  The important point
is that a clock’s zero error is not as significant
for precision work as its variation, because a
‘zero-error’ can always be easily corrected.
Hence clock 2 is to be preferred to clock 1. 

Example 2.7  We measure the period of
oscillation of a simple pendulum.  In
successive measurements, the readings
turn out to be 2.63 s, 2.56 s, 2.42 s, 2.71s
and 2.80 s. Calculate the absolute errors,
relative error or percentage error.

Answer   The mean period of oscillation of the
pendulum

( )
T =

+ + + +2.63 2.56 2.42 2.71 2.80 s

5

= 
13.12

5
 s

= 2.624  s
= 2.62  s

As the periods are measured to a resolution
of 0.01 s, all times are to the second decimal; it
is proper to put this mean period also to the
second decimal.

The errors in the measurements are

2.63 s – 2.62 s =   0.01 s
2.56 s – 2.62 s = – 0.06 s
2.42 s – 2.62 s = – 0.20 s
2.71 s – 2.62 s =    0.09 s
2.80 s – 2.62 s =    0.18 s

Note that the errors have the same units as the
quantity to be measured.

The arithmetic mean of all the absolute errors
(for arithmetic mean, we take only the
magnitudes) is

∆Τ
mean

 = [(0.01+ 0.06+0.20+0.09+0.18)s]/5
              = 0.54 s/5
              = 0.11 s

That means, the period of oscillation of the
simple pendulum is (2.62 ± 0.11) s i.e. it lies
between (2.62 + 0.11) s and (2.62 – 0.11) s or
between 2.73 s and 2.51 s.  As the arithmetic
mean of all the absolute errors is 0.11 s, there
is already an error in the tenth of a second.
Hence there is no point in giving the period to a
hundredth.  A more correct way will be to write

             T = 2.6 ± 0.1 s

Note that the last numeral 6 is unreliable, since
it may be anything between 5 and 7. We indicate
this by saying that the measurement has two
significant figures. In this case, the two
significant figures are 2, which is reliable and
6, which has an error associated with it.  You
will learn more about the significant figures in
section 2.7.

For this example, the relative error or the
percentage error is

δa = × =
01

100 4
.

2.6
%              

2.6.2  Combination of Errors

If we do an experiment involving several
measurements, we must know how the errors
in all the measurements combine.  For example,
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mass density is obtained by deviding mass by
the volume of the substance. If we have errors
in the measurement of mass and of the sizes or
dimensions, we must know what the error will
be in the density of the substance. To make such
estimates, we should learn how errors combine
in various mathematical operations. For this,
we use the following procedure.

(a)  Error of a sum or a difference

Suppose two physical quantities A and B have
measured values A ± ∆A, B ± ∆B respectively
where ∆A and ∆B are their absolute errors. We
wish to find the error ∆Z in the sum

Z = A + B.
We have by addition, Z ± ∆Z

= (A ± ∆A) + (B ± ∆B).
The maximum possible error in Z

∆Z = ∆A + ∆B

For the difference Z = A – B,  we have
                    Z ± ∆ Z =  (A ± ∆A) – (B ± ∆B)
                                = (A – B) ± ∆A ± ∆B

or, ± ∆Z =  ± ∆A ± ∆B

The maximum value of the error ∆Z  is again
∆A + ∆B.

Hence the rule : When two quantities are

added or subtracted, the absolute error in the

final result is the sum of the absolute errors

in the individual quantities.

Example 2.8  The temperatures of two
bodies measured by a thermometer are
t1 = 20 0C ± 0.5 0C and t2 = 50 0C ± 0.5 0C.
Calculate the temperature difference and
the error theirin.

Answer  t′ = t2–t1 = (50 0C±0.5 0C)– (200C±0.5 0C)

 t′ = 30 0C ± 1 0C 

(b)  Error of a product or a quotient

Suppose Z = AB and the measured values of A
and B are A ± ∆A and B ± ∆B. Then

Z ± ∆Z = (A ± ∆A)  (B ± ∆B)

                     = AB ± B ∆A ± A ∆B ± ∆A ∆B.

Dividing LHS by Z and RHS by AB we have,

1±(∆Z/Z) = 1 ± (∆A/A) ± (∆B/B) ± (∆A/A)(∆B/B).

Since ∆A and ∆B are small, we shall ignore their
product.

Hence the maximum relative error

∆Z/ Z = (∆A/A) + (∆B/B).

You can easily verify that this is true for division
also.

Hence the rule : When two quantities are
multiplied or divided, the relative error in the
result is the sum of the relative errors in the
multipliers.

How will you measure the length of a line?

What a naïve question, at this stage, you might
say! But what if it is not a straight line? Draw
a zigzag line in your copy, or on the blackboard.
Well, not too difficult again. You might take a
thread, place it along the line, open up the
thread, and measure its length.

Now imagine that you want to measure the
length of a national highway, a river, the railway
track between two stations, or the boundary
between two states or two nations. If you take
a string of length 1 metre or 100 metre, keep it
along the line, shift its position every time, the
arithmetic of man-hours of labour and expenses
on the project is not commensurate with the
outcome. Moreover, errors are bound to occur
in this enormous task. There is an interesting
fact about this. France and Belgium share a
common international boundary, whose length
mentioned in the official documents of the two
countries differs substantially!

Go one step beyond and imagine the
coastline where land meets sea. Roads and rivers
have fairly mild bends as compared to a
coastline. Even so, all documents, including our
school books, contain information on the length
of the coastline of Gujarat or Andhra Pradesh,
or the common boundary between two states,
etc. Railway tickets come with the distance
between stations printed on them. We have
‘milestones’ all along the roads indicating the
distances to various towns. So, how is it done?

One has to decide how much error one can
tolerate and optimise cost-effectiveness. If you
want smaller errors, it will involve high
technology and high costs. Suffice it to say that
it requires fairly advanced level of physics,
mathematics, engineering and technology. It
belongs to the areas of fractals, which has lately
become popular in theoretical physics. Even
then one doesn’t know how much to rely on
the figure that props up, as is clear from the
story of France and Belgium. Incidentally, this
story of the France-Belgium discrepancy
appears on the first page of an advanced Physics
book on the subject of fractals and chaos!
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Example 2.9  The resistance R = V/I where
V = (100 ± 5)V and I = (10 ± 0.2)A. Find the
percentage error in R.

Answer  The percentage error in V is 5% and in
I  it is 2%.  The total error in R would therefore
be 5% + 2% = 7%. 

Example 2.10  Two resistors of resistances
R1 = 100 ±3 ohm and R2 = 200 ± 4 ohm are
connected (a) in series, (b) in parallel. Find
the equivalent resistance of the (a) series
combination, (b) parallel combination. Use
for (a) the relation R = R1 + R2, and for (b)

 and 

Answer  (a) The equivalent resistance of series
combination

R = R1 + R2 =  (100 ± 3) ohm + (200 ± 4) ohm

        = 300 ± 7 ohm.

(b) The equivalent resistance of parallel
combination

1 2

1 2

200
3

R R
R

R R
′ = =

+  = 66.7 ohm

Then, from 
1 2

1 1 1
R R R

= +
′

we get,

1 2
2 2 2

1 2

R RR

R R R

′ ∆ ∆∆
= +

′

( ) ( )2 21 2
2 2

1 2

R R
R R R

R R

∆ ∆′ ′ ′∆ = +

 

2 266.7 66.7
3 4

100 200
   = +   
   

 = 1.8

Then, 66.7 1.8 ohmR ′ = ±
(Here, ∆R is expresed as 1.8 instead of 2 to

keep in confirmity with the rules of significant
figures.) 

(c) Error in case of a measured quantity
raised to a power

Suppose   Z  = A2,

Then,
     ∆Z/Z = (∆A/A) + (∆A/A) = 2 (∆A/A).

Hence, the relative error in A2 is two times the
error in A.

In general, if   Z = Ap Bq/Cr

Then,
      ∆Z/Z = p (∆A/A) + q (∆B/B) + r (∆C/C).

Hence the rule : The relative error in a
physical quantity raised to the power k is the
k times the relative error in the individual
quantity.

Example 2.11   Find the relative error in
Z, if Z = A4B1/3/CD3/2.

Answer  The relative error in Z is  ∆Z/Z =
4(∆A/A) +(1/3) (∆B/B) + (∆C/C) + (3/2) (∆D/D).



Example 2.12  The period of oscillation of

a simple pendulum is T L/g.= 2π
Measured value of L is 20.0 cm known to 1
mm accuracy and time for 100 oscillations
of the pendulum is found to be 90 s using
a wrist watch of 1 s resolution. What is the
accuracy in the determination of g ?

Answer   g = 4π2L/T2

Here, T = 
t

n
 and 

t
T

n

∆
∆ = . Therefore, 

T t

T t

∆ ∆
= .

The errors in both L and t are the least count
errors. Therefore,
(∆g/g) = (∆L/L) + 2(∆T/T )

  = 
0 1

20 0
2

1
90

0 027
.
.

.+ 





=

Thus, the percentage error in g is
 100 (∆g/g) = 100(∆L/L) + 2 × 100 (∆T/T )

= 3% 

2.7  SIGNIFICANT FIGURES

As discussed above, every measurement
involves errors. Thus, the result of
measurement should be reported in a way that
indicates the precision of measurement.
Normally, the reported result of measurement
is a number that includes all digits in the
number that are known reliably plus the first
digit that is uncertain. The reliable digits plus

2022-23



PHYSICS28

the first uncertain digit are known as
significant digits or significant figures. If we
say the period of oscillation of a simple
pendulum is 1.62 s, the digits 1 and 6 are
reliable and certain, while the digit 2 is
uncertain. Thus, the measured value has three
significant figures. The length of an object
reported after measurement to be 287.5 cm has
four significant figures, the digits 2, 8, 7 are
certain while the digit 5 is uncertain. Clearly,
reporting the result of measurement that
includes more digits than the significant digits
is superfluous and also misleading since it would
give a wrong idea about the precision of
measurement.

The rules for determining the number of
significant figures can be understood from the
following examples. Significant figures indicate,
as already mentioned, the precision of
measurement which depends on the least count
of the measuring instrument. A choice of
change of different units does not change the
number of significant digits or figures in a
measurement. This important remark makes
most of the following observations clear:
(1) For example, the length 2.308 cm has four
significant figures. But in different units, the
same value can be written as 0.02308 m or 23.08
mm or 23080 µm.

All these numbers have the same number of
significant figures (digits 2, 3, 0, 8), namely four.
This shows that the location of decimal point is
of no consequence in determining the number
of significant figures.
The example gives the following rules :
• All the non-zero digits are significant.

• All the zeros between two non-zero digits

are significant, no matter where the
decimal point is, if at all.

• If the number is less than 1, the zero(s)

on the right of decimal point but to the
left of the first non-zero digit are not
significant. [In 0.00 2308, the underlined
zeroes are not significant].

• The terminal or trailing zero(s) in a

number without a decimal point are not
significant.

[Thus 123 m = 12300 cm = 123000 mm has
three significant figures, the trailing zero(s)
being not significant.] However, you can also
see the next observation.

• The trailing zero(s) in a number with a

decimal point are significant.
[The numbers 3.500 or 0.06900 have four
significant figures each.]

(2) There can be some confusion regarding the
trailing zero(s). Suppose a length is reported to
be 4.700 m. It is evident that the zeroes here
are meant to convey the precision of
measurement and are, therefore, significant. [If
these were not, it would be superfluous to write
them explicitly, the reported measurement
would have been simply 4.7 m]. Now suppose
we change units, then

4.700 m = 470.0 cm = 4700 mm = 0.004700 km

Since the last number has trailing zero(s) in a
number with no decimal, we would conclude
erroneously from observation (1) above that the
number has two significant figures, while in
fact, it has four significant figures and a mere
change of units cannot change the number of
significant figures.

(3) To remove such ambiguities in
determining the number of significant
figures, the best way is to report every
measurement in scientific notation (in the
power of 10). In this notation, every number is
expressed as a × 10b, where a is a number
between 1 and 10, and b is any positive or
negative exponent (or power) of 10.  In order to
get an approximate idea of the number, we may
round off the number a to 1 (for a ≤ 5) and to 10
(for 5<a ≤ 10). Then the number can be
expressed approximately as 10b in which the
exponent (or power) b of 10 is called order of
magnitude of the physical quantity. When only
an estimate is required, the quantity is of the
order of 10b. For example, the diameter of the
earth (1.28×107m) is of the order of 107m with
the order of magnitude 7. The diameter of
hydrogen atom (1.06 ×10–10m) is of the order of
10–10m, with the order of magnitude
–10. Thus, the diameter of the earth is 17 orders
of magnitude larger than the hydrogen atom.

It is often customary to write the decimal after
the first digit. Now the confusion mentioned in
(a) above disappears :

 4.700 m = 4.700 × 102 cm
        = 4.700 × 103 mm = 4.700 × 10–3 km

The power of 10 is irrelevant to the
determination of significant figures. However, all
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zeroes appearing in the base number in the
scientific notation are significant. Each number
in this case has four significant figures.

Thus, in the scientific notation, no confusion
arises about the trailing zero(s) in the base
number a. They are always significant.

(4) The scientific notation is ideal for reporting
measurement. But if this is not adopted, we use
the rules adopted in the preceding example :
• For a number greater than 1, without any

decimal, the trailing zero(s) are not
significant.

• For a number with a decimal, the trailing

zero(s) are significant.

(5) The digit 0 conventionally put on the left of a
decimal for a number less than 1 (like 0.1250)
is never significant. However, the zeroes at the
end of such number are significant in a
measurement.

(6) The multiplying or dividing factors which are
neither rounded numbers nor numbers
representing measured values are exact and
have infinite number of significant digits. For

example in 
2
d

r =  or  s = 2πr, the factor 2 is an

exact number and it can be written as 2.0, 2.00

or 2.0000 as required. Similarly, in 
t

T
n

= , n is

an exact number.

2.7.1 Rules for Arithmetic Operations with
Significant Figures

The result of a calculation involving approximate
measured values of quantities (i.e. values with
limited number of significant figures) must reflect
the uncertainties in the original measured values.
It cannot be more accurate than the original
measured values themselves on which the result
is based. In general, the final result should not
have more significant figures than the original
data from which it was obtained. Thus, if mass of
an object is measured to be, say, 4.237 g (four
significant figures) and its volume is measured to
be 2.51 cm3, then its density, by mere arithmetic
division, is 1.68804780876 g/cm3 upto 11 decimal
places. It would be clearly absurd and irrelevant
to record the calculated value of density to such a
precision when the measurements on which the
value is based, have much less precision. The

following rules for arithmetic operations with
significant figures ensure that the final result of
a calculation is shown with the precision that is
consistent with the precision of the input
measured values :
(1)  In multiplication or division, the final
result should retain as many significant
figures as are there in the original number
with the least significant figures.

Thus, in the example above, density should
be reported to three significant figures.

Density
4.237g

2.51 cm
1.69 g cm3

-3= =

Similarly,  if the speed of light is given as
3 × 108 m s-1 (one significant figure) and one
year (1y = 365.25 d) has 3.1557 × 107 s (five

significant figures), the light year is 9.47 × 1015 m
(three significant figures).

(2) In addition or subtraction, the final result
should retain as many decimal places as are
there in the number with the least decimal
places.

For example, the sum of the numbers
436.32 g, 227.2 g and 0.301 g by mere arithmetic
addition,  is 663.821 g. But the least precise
measurement (227.2 g) is correct to only one
decimal place. The final result should, therefore,
be rounded off to 663.8 g.

Similarly, the difference in length can be
expressed as :

0.307 m – 0.304 m = 0.003 m = 3 × 10–3 m.

Note that we should not use the rule (1)
applicable for multiplication and division and
write 664 g as the result in the example of
addition and 3.00 × 10–3 m in the example of
subtraction. They do not convey the precision
of measurement properly. For addition and
subtraction, the rule is in terms of decimal
places.

2.7.2   Rounding off the Uncertain Digits

The result of computation with approximate
numbers, which contain more than one
uncertain digit, should be rounded off.  The rules
for rounding off numbers to the appropriate
significant figures are obvious in most cases.  A
number 2.746 rounded off to three significant
figures is 2.75, while the number 2.743 would
be 2.74.  The rule by convention is that the
preceding digit is raised by 1 if the
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insignificant digit to be dropped (the

underlined digit in this case)  is more than

5, and is left  unchanged if the latter is less

than 5.  But what if the number is 2.745 in
which the insignificant digit is 5.  Here, the
convention is that if the preceding digit is

even, the insignificant digit is simply

dropped and, if it is odd, the preceding digit

is raised by 1. Then, the number 2.745 rounded
off to three significant figures becomes 2.74.  On
the other hand, the number 2.735 rounded off
to three significant figures becomes 2.74 since
the preceding digit is odd.

In any involved or complex multi-step
calculation, you should retain, in intermediate
steps, one digit more than the significant digits
and round off to proper significant figures at the
end of the calculation.  Similarly, a number
known to be within many significant figures,
such as in 2.99792458  × 108 m/s for the speed
of light in vacuum, is rounded off to an
approximate value 3 × 108 m/s , which is often
employed in computations.  Finally, remember
that exact numbers that appear in formulae like

2 π in T
L

g
= 2π ,  have a large (infinite) number

of significant figures. The value of π =
3.1415926.... is known to a large number of
significant figures. You may take the  value as
3.142 or 3.14 for π, with limited number of
significant figures as required in specific
cases.

Example 2.13  Each side of a cube is
measured to be 7.203 m.  What are the
total surface area and the volume of the
cube to appropriate significant figures?

Answer   The number of significant figures in
the measured length is 4.  The calculated area
and the volume should therefore be rounded off
to 4 significant figures.

Surface area of the cube = 6(7.203)2 m2

= 311.299254 m2

= 311.3 m2

Volume of the cube = (7.203)3  m3

= 373.714754 m3

= 373.7 m3 

Example 2.14  5.74 g of a substance
occupies 1.2 cm3.  Express its density by
keeping the significant figures in view.

Answer  There are 3 significant figures in the
measured mass whereas there are only 2
significant figures in the measured  volume.
Hence the density should be expressed to only
2 significant figures.

Density = −5.74
1.2

g cm 3

                       = 4.8 g cm--3 . 

2.7.3 Rules for Determining the Uncertainty
in the Results of Arithmatic
Calculations

The rules for determining the uncertainty or
error in the number/measured quantity in
arithmetic operations can be understood from
the following examples.
(1) If the length and breadth of a thin
rectangular sheet are measured, using a metre
scale as 16.2 cm and, 10.1 cm respectively, there
are three significant figures in each
measurement.  It means that the length l may
be written as

                       l = 16.2 ± 0.1  cm

      = 16.2 cm ± 0.6 %.

Similarly, the breadth b may be written as

b = 10.1  ± 0.1 cm

   = 10.1 cm ± 1 %

Then, the error of the product of two (or more)
experimental values, using the combination of
errors rule, will be

    l b = 163.62 cm2 + 1.6%

         = 163.62 + 2.6 cm2

This leads us to quote the final result as

l b = 164 + 3 cm2

Here 3 cm2 is the uncertainty or error in the
estimation of area of rectangular sheet.

(2) If a set of experimental data is specified
to n significant figures, a result obtained by
combining the data will also be valid to n
significant figures.

However, if data are subtracted, the number of
significant figures can be reduced.
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For example, 12.9 g – 7.06 g, both specified to three
significant figures, cannot properly be evaluated
as 5.84 g but only as 5.8 g, as uncertainties in
subtraction or addition combine in a different
fashion (smallest number of decimal places rather
than the number of significant figures in any of
the number added or subtracted).

(3) The relative error of a value of number
specified to significant figures depends not
only on n but also on the number itself.

For example,  the accuracy  in measurement of
mass 1.02 g is ± 0.01 g  whereas another
measurement 9.89 g is also accurate to  ± 0.01 g.
The relative error in 1.02 g is

= (± 0.01/1.02) × 100 %
= ± 1%

Similarly, the relative error in 9.89 g  is
= (± 0.01/9.89) × 100 %

                   = ± 0.1 %
Finally, remember that intermediate results in

a multi-step computation should be

calculated to one more significant figure in

every measurement than the number of

digits in the least precise measurement.

These should be justified by the data and then
the arithmetic operations may be carried out;
otherwise rounding errors can build up. For
example, the reciprocal of 9.58, calculated (after
rounding off) to the same number of significant
figures (three) is 0.104, but the reciprocal of
0.104 calculated to three significant figures is
9.62.  However, if we had written 1/9.58 = 0.1044
and then taken the reciprocal to three significant
figures, we would have retrieved the original
value of 9.58.

This example justifies the idea to retain one
more extra digit (than the number of digits in
the least precise measurement) in intermediate
steps of the complex multi-step calculations in
order to avoid additional errors in the process
of rounding off the numbers.

2.8  DIMENSIONS OF PHYSICAL QUANTITIES

The nature of a physical quantity is described
by its dimensions. All the physical quantities
represented by derived units can be expressed
in terms of some combination of seven
fundamental or base quantities. We shall call
these base quantities as the seven dimensions
of the physical world, which are denoted with

square brackets [ ]. Thus, length has the
dimension [L], mass [M], time [T], electric current
[A], thermodynamic temperature [K], luminous
intensity [cd], and amount of substance [mol].
The dimensions of a physical quantity are the
powers (or exponents) to which the base
quantities are raised to represent that
quantity. Note that using the square brackets
[  ] round a quantity means that we are dealing
with ‘the dimensions of’ the quantity.

In mechanics, all the physical quantities can
be written in terms of the dimensions [L], [M]
and [T]. For example, the volume occupied by
an object is expressed as the product of length,
breadth and height, or three lengths. Hence the
dimensions of volume are [L] × [L] × [L] = [L]3 = [L3].
As the volume is independent of mass and time,
it is said to possess zero dimension in mass [M°],
zero dimension in time [T°] and three
dimensions in length.

Similarly, force, as the product of mass and
acceleration, can be expressed as
Force   = mass × acceleration

= mass × (length)/(time)2

The dimensions of force are [M] [L]/[T]2 =
[M L T–2]. Thus, the force has one dimension in
mass, one dimension in length, and –2
dimensions in time. The dimensions in all other
base quantities are zero.

Note that in this type of representation, the
magnitudes are not considered. It is the quality
of the type of the physical quantity that enters.
Thus, a change in velocity, initial velocity,
average velocity, final velocity, and speed are
all equivalent in this context. Since all these
quantities can be expressed as length/time,
their dimensions are [L]/[T] or [L T–1].

2.9 DIMENSIONAL FORMULAE AND
DIMENSIONAL EQUATIONS

The expression which shows how and which of
the base quantities represent the dimensions
of a physical quantity is called the dimensional
formula of the given physical quantity. For
example, the dimensional formula of the volume
is [M° L3 T°],  and  that of speed or velocity is
[M° L T-1]. Similarly, [M° L T–2] is the dimensional
formula of acceleration and [M L–3 T°] that of
mass density.

An equation obtained by equating a physical
quantity with its dimensional formula is called
the dimensional equation of the physical
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